| Reg. No.: |  |  | t h |  | - W |  |
|-----------|--|--|-----|--|-----|--|
|-----------|--|--|-----|--|-----|--|

## Question Paper Code: 41022

## B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2024.

Fifth/Sixth/Seventh Semester

Electrical and Electronics Engineering

## EE 3033 - HYBRID ENERGY TECHNOLOGY

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A —  $(10 \times 2 = 20 \text{ marks})$ 

- 1. List any two advantages of hybrid energy system.
- 2. What are the impacts of renewable energy power generation on the environment?
- 3. How SCIG is differ from PMSG?
- 4. What do you mean by Doubly fed induction generator?
- 5. What are the two main types of solar PV system?
- 6. List out the power converters for SPV systems.
- 7. What is PWM inverters?
- 8. List the limitations of matric converters.
- 9. What is the range of hybrid systems?
- 10. Mention the types of hybrid systems.

## PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Discuss present Indian and International energy scenario of conventional and renewable energy sources.

Or

- (b) Explain the construction, working principle, and characteristics of Solar photovoltaic and Fuel cells.
- 12. (a) Discuss the construction, working principle, and characteristics of SCIG.

Or

- (b) Explain the construction, working principle, and characteristics of Doubly fed induction generator.
- 13. (a) Discuss the line commutated converters in the inversion mode with neat sketch.

Or

- (b) Explain grid tied (battery less) system and stand-alone PV system.
- 14. (a) Explain Stand-alone and Bi-directional converters with neat sketch.

Or

- (b) Explain the Grid-Interactive and Matrix converters with neat diagrams.
- 15. (a) Explain the Diesel-PV and Wind-PV hybrid systems in detail.

Or

(b) Explain the PV-fuel cell and micro-hydel - PV hybrid systems in detail.

PART C 
$$-$$
 (1 × 15 = 15 marks)

16. (a) Discuss in detail the various renewable energy sources with necessary sketches.

Or

(b) Explain boost converters and buck-boost converters in detail.